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ABSTRACT 

Let p be a fixed prime and let G be a finite simple group. It is shown 

that  two randomly chosen elements of G of orders prime to p generate G 

with probability tending to 1 as IG I --~ oc. This answers a question of 

Kantor.  Some related results are also established. 

1. I n t r o d u c t i o n  

Let G be a finite simple group. A conjecture of J. D. Dixon, which is now a 

theorem (aft [D], [KaLu], [LiShl]), states that the probability that two randomly 

chosen elements x, y of G generate G tends to 1 as IG I --+ co. Recently Bill 

Kantor asked whether a similar result holds if we pick at random two elements 

of odd order. He also considered other versions of the problem, such as random 

generation by two elements of even order, or by an element of even order and an 

element of odd order. In this paper we answer these questions. In fact we prove 

a bit more. Recall that  for a prime p and a group element x we say that x is 

p-singular if its order is divisible by p, and that x is p-regular if its order is not 

divisible by p. The group PSLn(q) will also be denoted by L~(q). 
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THEOREM 1.1: Let p be a fixed prime and let G be a finite simple group. Then: 

(i) The probability that two randomly chosen p-regular elements of G generate 

G tends to 1 as IGI--~ oo. 

(ii) Suppose p divides IG[, and if  p -- 2 suppose G ¢ L2(q) with q even. Then 

the probability that two randomly chosen p-singular elements of G generate G 

tends to 1 as IGI -+ co. 

(iii) Suppose p divides [G I. Then the probability that a randomly chosen p- 

regular element of G and a randomly chosen p-singular element of G generate G 

tends to 1 as IGI -+ c~. 

The exception in part (ii) above is genuine. Indeed, the elements of even order 

in L2(2 k) are involutions, and two involutions always generate a proper (dihedral) 

subgroup. 

For other results on random generation by elements of restricted orders see 

[LiSh2], [LiSh3]. We note that the methods used here seem to be applicable in 

other contexts, such as random generation by n th  powers, etc. Indeed, we first 

obtain a random generation result for any "large" subset S of a finite simple group 

G (see Corollaries 2.3 and 2.4 below). We then show that  this result already gives 

rise to many instances of Theorem 1.1. The remaining cases are dealt with using 

a more detailed analysis. 

ACKNOWLEDGEMENT: I am grateful to Bill Kantor for useful discussions, and 

to the Institute for Advanced Studies at the Hebrew University for its kind 

hospitality during Spring Semester 2000, when the program on Asymptotic Group 

Theory took place. 

2. P r o o f s  

Let p be a fixed prime, and let c, cl, c2, . . ,  denote positive constants. Let G be a 

finite simple group, and let m(G) denote the minimal index of a proper subgroup 

of G. Let Xn (q) denote a finite simple group of Lie type of rank n over a field 

with q elements. 

LEMMA 2.1: Let G = Xn(q) be sufficiently large. Then: 
(i) m(G) >_ qn. 

(ii) If  re(G) <_ cq 2 then G is one of n2(q), L3(q) or the Suzuki group Sz(q). 

(iii) If  m(G) <_ cq then G = n2(q). 

For classical groups this follows from Table 5.2.A of [KL]. For exceptional 

groups this follows from [LiSa] (see also Lemma 6.4 of [LiSh3]). 
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Let Q(G) denote the proportion of non-generating pairs among all pairs of 

elements of G. 

LEMMA 2.2: There exist a constant c such that Q(G) <_ cm(G) - :  for all finite 

simple group G. 

This follows from [Ba], [Ka], [LiSh3] (where more refined estimates are 

obtained). 
For a subset S of G let Qs (G) denote the probability that two randomly chosen 

elements from S do not generate G. We write f > >  g for functions f ,  g if the 

ratio f / g  tends to infinity. 

COROLLARY 2.3: Let S be a subset of a finite simple group G. Then Qs(G)  

<_ clGl2m(c)-llS]-2. Consequently, if ISl/ lal  > >  re(C) -1/2, then Os(C)  -+ O. 

Proof: Among all the ISI 2 pairs of elements of S, the number of non-generating 

pairs is obviously at most IGI2Q(G). Hence Qs(G) _< IGI2Q(G)IS1-2. The 

first assertion now follows by applying Lemma 2.2, whereas the second assertion 

follows from the first. | 

COROLLARY 2.4: Let G be a finite simple group and let S C_ G. Suppose either 
G = An and ]S]/IG I > >  n -:/2,  or G = Xn(q) and ISI/IGI > >  q-n~2. Then 

Qs(a)  ~ O. 

Proof: This follows by combining Lemmas 2.1 and 2.3 and the equality re(An) 

- -n .  | 

Fix a prime p. Given G let R be the set of p-regular elements of G, and let S be 

the set of p-singular elements of G. Set Qp,(G) = QR(G) and Qp(G) = Qs(G).  
In addition, denote by Qp,p, (G) the probability that a randomly chosen element 
of S and a randomly chosen element of R do not generate G. Our aim is to show 

that  Qp(G),Qp,(G),Qp,B,(G) -+ 0 as IGI --+ :xD. 

Set #p,(G) = IRI/IGI and #B(G) = ISI/IG[. Clearly #B(G) + #p,(G) = 1. 

LEMMA 2.5: Let p be a fixed prime. Then there are positive constants c:, c2, c3 

(depending on p) such that 

(i) cln -: /p  <_ #p,(An) <_ can -:/p,  

(ii) #p,(Xn(q)) >_ c3n-:.  

Indeed, part (i) follows from [ET] and [BLNPS], and part (ii) from [NIP] and 

[BPS]. 
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COROLLARY 2.6: I f  (G,p) 7 ~ (An,2) then Qp,(G) -+ 0 as IGI -+ oo. 

Proof'. This follows by combining 2.4 and 2.5, since Cl n - l I p  >> n -t12 for odd 
p, and c3 n-1 > >  q-n~2. | 

LEMMA 2.7: Let .M be a set of representatives for the conjugacy classes of the 

maxima/subgroups of G. Then: 

(i) Qv(G) <_ EMe~(~v,(M)/~v(G))21G : M1-1. 
(ii) Qp(G) <_ ~]Me~(#p(M) /#p(G) )e]G : M[ -1. 
(iii) Qp,p, (G) <_ ~]Mcaa #p (M)#p, (M)#v(G)-l#p, (G) -11G: M[-1. 

Proo~ If two p-regular elements x, y of G do not generate G then they lie 

in some maximal subgroup M of G, and the probability of this (given M) is 
(#p, (M)  IMI/#p ' (G) IGI)2. Summing over all maximal subgroups M we obtain 

Qp, (G) <_ Z(#p, (M)IMIl~'v' (a)Ial) 2. 
M 

Part (i) follows since each M has IG : M I conjugate subgroups, each contributing 

the same term to the sum. The proofs of parts (ii) and (iii) are similar. | 

LEMMA 2.8: Q2,(A~) --+ 0 as n -+ oo. 

Proof'. Let G = An and let 3d be as above. Part (i) of Lemma 2.7 yields 

Q2,(G) _< (#2'(An-1)/#2'(An))  2" n -1 + ~ (IZ2,(M)/#2,(G))21G : M1-1. 
A,, -17$ M E.fM 

By Lemma 2.5(i) the first summand of the right hand side is bounded above 
by (c2(n - 1)-1/2/cln-1/2)  2 • n -1 = O(n-1), whereas the second summand is 

bounded above by ~A,_I~MeM(1/Iz2,(G))21G : M{ -1 which in turn is bounded 

above by cn • ~]A~_~Meaa I G : M1-1" It follows from the arguments in Babai 

[Ba] (see also [Ka]) that 

Z [G: M[ -1 = O(n-2). 
An-I~ME.M 

Putting everything together we obtain Q2,(G) = O(n-1) .  The result follows. 
| 

The proof of Theorem 1.1(i) is now complete. 

In order to deal with p-singular elements suppose p divides [G I. Then we have 
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LEMMA 2.9: Let G = Xn(q) ,  where q = r k, r prime.  

(i) I f  r ~ p then #p(G) >_ p-2 .  

(ii) I f  r = p then #p(G) >_ cq -1.  

This is proved in [IKS]. 

Note that  #p(An)  = 1 - #p, (An) >_ 1 - c2u -1/p -+ 1 as u -+ oc. 

LEMMA 2.10: Suppose G is al ternating or a Lie type  group in characteristic ~ p. 

Then Qp(G) -+ 0 as tG[ -+ oc. 

Proof: In both cases #p(G) is bounded below by some positive constant (possibly 

depending on p), so the conclusion follows from 2.4. | 

LEMMA 2.11: Suppose G is a Lie type group in characteristic p, and assume 

G ¢ L2(q), L3(q), Sz(q) .  Then Q p ( a )  -+ 0 as IGI --+ c~. 

Proof: Let G = Xn(q)  where q = pk. Suppose Qp(G) > e for some fixed e > 0. 

We have to show that  IGI is bounded (in terms of e). By Lemma 2.3 we have 

c]G]2m(G) -1 IS] -2 >_ ~ where S is the set of p-singular elements of G. This yields 

m ( a )  < c4(IGI/ISI) 2 = C4#p(G) -2.  

Applying Lemma 2.9(ii) it follows that  m ( G )  <_ csq 2. Since G is not one of 

L2(q), L3(q), Sz(q) ,  it follows from Lemma 2.1(ii) that  [GJ is bounded. | 

We now deal with the remaining groups, using information on their subgroup 

structure and Lemma 2.7. 

LEMMA 2.12: Let  p = 2 and G = Sz(q) .  Then Qp(G) -+ 0 as [G[ --+ oc. 

Proo£" By [Su] the maximal subgroups of G up to conjugacy are M1 of order 

q2(q _ 1), /142 (dihedral) of order 2(q - 1), M3 of order 4(q + v f ~  + 1), M4 of 

order 4(q - x / ~  + 1), as well as the subfield subgroups M5x :-- Sz (q  1/~) where 

r > 3 ranges over the prime divisors of k :-- log 2 q (if k is composite). 

Consider the upper bound for Qp(G) in Lemma 2.7(ii). Let M = M1. Then 

it is known [Su] that  M has a normal 2-subgroup Q of order q2 and index q - 1 

such that  any a E M \ Q acts fixed point freely on Q. It  follows that  every 

element a C M \ Q is 2-regular, since for some odd t we have a t E Q, hence 

a t E CQ(a) = 1. We see that  the 2-singular elements of M are precisely the 

non-trivial elements of Q, hence 

#2(M) = (IQI - 1)/[M[ = (q + 1)/q 2 -< 2/q. 
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It  follows that  for M = M1 we have 

(#p(M)/#p(G))21G : M1-1 <_ ((2/q)/(c/q))2(q 2 + 1) -1 = O(q-2).  

For the remaining maximal  subgroups M E 3,t it suffices to use the inequalities 

#p(M) _< 1 and {M I <_ q5/3 to obtain 

(t~p(M)/t~p(a))21G : M1-1 <_ (1/(c/q))2(qt°/3) -1 = 0(q-4/3). 

Noting that  there are at most log log q subfield subgroups in 34 we obtain 

Qp(G) <_ E (#p(M)/#p(G))21G : M[-1 <- cq-2 + c l o g l o g q - q - a / a ,  
ME.A4 

which tends to 0 as q -~ oo. In fact a more careful analysis shows that  Qp(G) 
= O(q-2).  | 

LEMMA 2.13: Let G = L2(q), q = pk, p > 2. Then Qp(a) -+ 0 as [a[ ~ oo. 

Proof: Here the maximal subgroups in 3,t are the parabolic subgroup M1 of 

order q(q - 1)/2, the dihedral subgroups M2 and M3 of order q + 1 and q - 1 

respectively, the subfield subgroups M4,r = L2(q 1/r) for r a prime divisor of k, 

and some bounded number of bounded subgroups. The p-singular elements in 

M1 have order p and we have/zp(M1) = (q - 1)/[MI[ = 2/q. Plugging this as 

well as #p (M2)  = #p(M3)  = 0 and #p(M4, r )  _< c/q 1/r in Lemma 2.7(ii) we easily 

obtain Qp(G) = O(q-W2). The result follows. II 

Note that  for p = 2, q = 2 k and G = L2(q) the dihedral subgroups M = D2(q+l) 

satisfy #2(M) = 1/2, which is why the sum in 2.7(ii) does not tend to 0. 

LEMMA 2.14: Let G = L3(q), where q = pk. Then Qp(G) --+ 0 as [G[ --+ oo. 

Proof." The argument is similar and is left to the reader. 

This completes the proof of Theorem 1.1(ii). 

To prove part  (iii) we need the following. 

LEMMA 2.15: With the above notation we have 

Qp,p,(c) <_ Q(a) ,p(a) - I .p , (a)  -1. 

Proof'. This follows from Qp,¢(G) <_ Q(G)IGI /IRIISI . , 
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LEMMA 2.16: Suppose G ~ L2(q) for some pth power q. Then Qp,p,(G) --~ 0 as 

Proof  Applying Lemmas 2.2 and 2.15 we obtain 

Q~,~, (u) _< ~(u) - l ,~ (u) -~ ,~ ,  (u) -~. 

For G = An this yields Qp,p,(G) ~_ c n - l n  1/p which tends to 0. Let G = X, (q ) .  

If  q is not a pth  power then #p(G) > p-2 and #p,(G) >_ c/n, and so Qp,p, ~ 

cq-np2n --+ 0 as ]G I --+ oc. So let q be a p t h  power. Then #p(G)- l#p,(G) -1 ~ cq 

and we obtain Qp,p,(G) < cm(G)- lq .  Since G • L2(q) it follows from Lemma 

2.1 that  the right hand side tends to 0. | 

LEMMA 2.17: Let G = L2(q) where q = pk. Then Qp,B,(G) -+ 0 as IG] -+ oc. 

Proof: This follows by applying part  (iii) of Lemma 2.7. 

straightforward and are left to the reader. | 

The proof of Theorem 1.1 is now complete. 

The details are 

R e f e r e n c e s  

[Ba] 

[BPS] 

[BLNPS] 

[D] 

[ET] 

[IKS] 

[Ka] 

[KaLu] 

L. Babai, The probability of generating the symmetric group, Journal of 
Combinatorial Theory, Series A 52 (1989), 148-153. 

L. Babai, P. P. Pfdfy and J. Saxl, On the number of p-regular elements in 
simple groups, Preprint, 2000. 

R. Beals, C. R. Leedham-Green, A. C. Niemeyer, C. E. Praeger and ~,. 
Seress, On the proportions of certain types of elements of finite alternating 
and symmetric groups, Preprint, 2000. 

J. D. Dixon~ The probability of generating the symmetric group, Mathema- 
tische Zeitschrift 110 (1969), 199-205. 

P. Erd6s and P. Turin, On some problems of a statistical group theory. II, 
Acta Mathematica Academiae Scientiarum Hungarieae 18 (1967), 151-163. 

I. M. Isaacs, W. M. Kantor and N. Spaltenstein, On the probability that a 
random group element is p-singular, Journal of Algebra 176 (1995), 139-181. 

W. M. Kantor, Some topics in asymptotic group theory, in Groups, Combina- 
torics and Geometry (M. W. Liebeck and J. Saxl, eds.), Cambridge University 
Press, 1992. 

W. M. Kantor and A. Lubotzky, The probability of generating a finite 
classical group, Geometriae Dedicata 36 (1990), 67-87. 



60 A. SHALEV Isr. J. Math. 

[KL] 

[LiSa] 

[LiShl] 

[LiSh2] 

[LiSh3] 

[NIP] 

[Su] 

P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite 
Classical Groups, London Mathematical Society Lecture Note Series 129, 
Cambridge University Press, 1990. 

M. W. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite 

exceptional groups of Lie type, Proceedings of the London Mathematical 
Society 55 (1987), 299-330. 

M. W. Liebeek and A. Shalev, The probability of generating a finite simpIe 
group, Geometriae Dedicata 56 (1995), 103-113. 

M. W. Liebeck and A. Shalev, Classical groups, probabilistic methods, and 

the (2,3)-generation problem, Annals of Mathematics 144 (1996), 77-125. 

M. W. Liebeck and A. Shalev, Simple groups, probabilistic methods, and a 

conjecture of Kantor and Lubotzky, Journal of Algebra 184 (1996), 31-57. 

A. C. Niemeyer and C. E. Praeger, A recognition algorithm for classical 

groups over finite fields, Proceedings of the London Mathematical Society 
77 (1998), 117-169. 

M. Suzuki, On a class of doubly transitive groups, Annals of Mathematics 
75 (1962), 105-145. 


